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Abstract—Two main trends characterize today’s communication landscape and are finding their way into 

industrial facilities: the rollout of 5G with its distinct support for vertical industries and the increasing 

success of machine learning (ML). The combination of those two technologies open the doors to many 

exciting industrial applications and its impact is expected to rapidly increase in the coming years, given the 

abundant data growth and the availability of powerful edge computers in production facilities. Unlike most 

previous work that has considered the application of 5G and ML in industrial environment separately, this 

paper highlights the potential and synergies that result from combining them. The overall vision presented 

here generates from the KICK project, a collaboration of several partners from the manufacturing and 

communication industry as well as research institutes. This unprecedented blend of 5G and ML expertise 

creates a unique perspective on ML-supported industrial communications and their role in facilitating 

industrial automation. The paper identifies key open industrial challenges that are grouped into four use 

cases: wireless connectivity and edge-cloud integration, flexibility in network reconfiguration, dynamicity of 

heterogeneous network services, and mobility of robots and vehicles. Moreover, the paper provides insights 

into the advantages of ML-based industrial communications and discusses current challenges of data 

acquisition in real systems. 

I. INTRODUCTION 

One of the most important differences between 5G and previous generations of cellular networks lies in the 

strong focus of 5G on supporting vertical industries. Connected driving, agriculture, logistics, and health are 

undoubtedly important target businesses, but today, industrial automation, production facilities, and the industrial 

Internet of Things are seen as the most demanding and, probably, most attractive new application domains [1]. The 

capabilities of 5G extend far beyond mobile broadband with ever increasing data rates. Specifically, 5G supports 

communications with unprecedented reliability and very low latency, as well as massive IoT connectivity. This 

paves the way for numerous exciting industrial applications including new levels of human-robot interaction, 

advanced concepts of human-machine collaboration, support for fleets of automated guided vehicles (AGVs), and 

collaborative robots. As enabler for these new applications and as the basis for a new generation of holistic 

industrial connectivity solutions, 5G might even have a disruptive impact when related building blocks, such as 

wireless connectivity, edge computing, or network slicing, are introduced into future smart factories. 

With artificial intelligence and, in particular, machine learning (ML), another technology besides 5G, with the 

potential to dramatically change the way we design and operate networks, is now finding its way into industrial 

facilities [2]. Depending on the application, ML has in the last years proven to be a powerful tool for classification 

of events, detection of anomalies, prediction, and tactical decision making. 
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Unlike most of the existing work, which either addresses the challenges of applying 5G technologies to industrial 

communication systems [3], or provides a review on data mining and ML approaches in the manufacturing industry 

[4], the purpose of this paper is to highlight the potential and synergies resulting from the combination of these two 

major technologies (i.e., 5G and ML) in industrial environments. In the following, the overall vision developed and 

promoted within the context of the project “KICK” [5] is presented. The project consortium brings together diverse 

partners, from manufacturing and communication industries to research institutes with a strong ML expertise. This 

creates a unique perspective on ML-empowered industrial communications, hereafter also referred to as campus 

networks, and their role in enabling industrial automation. Since network traffic and processes in the physical world, 

particularly in controlled environments such as production facilities, are highly correlated, understanding, 

classifying, and predicting their behaviors will introduce a joint intelligence from which information technology 

(IT) and operational technology (OT) will highly benefit. Fig. 1 illustrates the combination of the production and 

communication worlds. Data are collected from both the production and network management systems, they are 

analyzed and used to optimize and adapt the campus network to production needs. 

The remainder of the paper elaborates on the KICK vision and presents what the consortium believes are the 

open industrial challenges by classifying them into four key use cases: 

• Wireless connectivity and edge cloud integration 

• Flexibility in campus network reconfiguration  

• Dynamicity of heterogeneous network services 

• Mobility of robots and vehicles 

The paper also provides insights on the benefits of ML-based campus networks and discusses current challenges 

of data acquisition in real systems. The contribution is based on two guiding questions: (i) What are the benefits of 

5G and ML in terms of support to factory modernization, increased flexibility, improved efficiency and better 

performance for the IT and OT side? (ii) Which functionalities are needed from communication and ML 

perspectives to support such industrial challenges? 

II. INDUSTRIAL USE CASES 

Manufacturing is experiencing a trend from mass-production to mass-customization [6], with time and cost of 

reconfiguring production lines posing major challenges. To achieve profitable operation with a batch-size of one, 

factory owners are investing heavily in digitalization, machines are becoming more versatile, human-machine 

collaboration is becoming more sophisticated, and fixed production lines are replaced by flexible production 

stations. 

In the following, specific use cases are derived from selected industrial challenges that are, on the one hand, 

highly important for the production industry and, on the other hand, appear promising to be solved by the adoption 

of 5G and the application of ML techniques. Each use case describes the real challenges or desired development 

directions of the modern production enterprises. These are then translated into envisaged network solutions, 

 
 

Fig. 1. ML enables synergies of production and communication worlds in industrial environments. 
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supported by suitable ML techniques. Fig. 2 shows the transition from traditional, mainly wired static factories to 

future wirelessly interconnected flexible factories, enabled by the presented use cases. Table I gives a concise 

overview of those, highlighting the key elements: industrial challenge, communication solution, and ML support. 

A. Wireless Connectivity and Edge Cloud Integration 

Industrial control applications constitute one of the central and critical parts of the factory automation. In simple 

terms, a control application consists of a controller, a controlled system (actuators), and one or multiple sensors. 

Control applications are typically deployed on dedicated real-time programmable logic controllers (PLCs) or 

industrial PCs, which are often placed next to the sensors and actuators. When hundreds of such controllers are in 

use on a factory floor, it is challenging to manage, upgrade, and scale such systems cost-effectively. Furthermore, 

with the increasingly required flexibility, re-cabling production machines and reconfiguring networks and 

applications become complex, time-consuming and expensive tasks. 

Introducing wireless connectivity increases the flexibility of the factory floor and the scalability of control 

systems. Furthermore, the high reliability and low latency promised by 5G systems guarantee network performance 

suitable for many control applications, such as mobile robotics. Another promising solution is the use of an on-

premise edge cloud with a highly virtualized infrastructure [7]. Applications like closed-loop control, simultaneous 

localization and mapping (SLAM), and rendering of augmented reality (AR) generate multimedia traffic with high 

demand on both network resources for transmission and computing resources for post-processing. Thus, they 

greatly benefit from the introduction of a factory edge cloud, thanks to the increased shared computing resources 

and an easier to upgrade and maintain infrastructure. Although the combination of wireless connectivity and on-

premise edge computing enables a powerful and flexible operation of industrial systems, a significant level of 

orchestration is required across computing, networking, and applications. 

The orchestration can be supported by anticipating changes and needs, either in the network or in the production 

environment, and by exploiting those to perform application-level adaptations. For instance, the following two 

cases can be considered: (i) Self-adaptation of the application to the known or predicted conditions of the campus 

network, e.g., considering quality of service (QoS), coverage, traffic load, or fading; (ii) Initial deployment or 

dynamic offloading of specific functions (e.g., control, AR rendering) to the edge cloud based on the performance 

required by the applications and current network conditions. 

In general, given the complexity and dynamic nature of the factory environment, application requirements, and 

data traffic, automatization and optimization require the adoption of ML approaches. A challenging task before 

applying ML approaches is to find a proper classification of different system states and associated traffic patterns. 

Such classification can help to predict bottlenecks and avoid them by proper load balancing, i.e., by dynamically 

offloading computationally expensive tasks from the devices to the edge cloud. Having found such a classification 

scheme, ML approaches such as reinforcement learning (RL) can be applied for predicting load changes or for 

optimizing the function placement and scheduling. 

 
 

Fig. 2. Transition from traditional to future factory enabled by the four use cases (from top left and clockwise: wireless connectivity and 

edge cloud integration, flexibility in campus network reconfiguration, mobility of robots and vehicles, and dynamicity of heterogeneous 

network services). 
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B. Flexibility in Campus Network Reconfiguration 

The increasing dynamicity of future industrial production strategies that results from the need for accommodating 

highly optimized and individualized processes, requires flexible production facilities capable of adapting efficiently 

and quickly to changing requirements and configurations with minimum downtimes. The resulting tightened needs 

on the flexibility and adaptability of the production infrastructure are directly reflected in the communication 

networks. As for the previous use case, wireless connectivity is an essential component of campus networks, but 

this also implies an inherent sensitivity of the communication systems to the frequent variations of the radio channel 

conditions, which are a direct result of the changes in the production environment. This calls for highly customized 

network planning and configuration solutions that empower plant operators to efficiently plan and manage the 

campus network at a minimum level of expertise. 

In contrast to classical cellular networks, where the focus is on coverage optimization, the challenges faced in 

industrial communications are driven by the stringent reliability and latency constraints and by the diverse QoS 

requirements of industrial processes e.g., AR applications. Meeting those requires configurations of the campus 

networks that are optimized for the specific radio conditions of the production environment. For planned changes, 

such as the redesign of a factory floor or replacement of production lines, the impact on network performance must 

be determined in advance. Subsequent network reconfigurations should happen fully automated without human 

intervention. However, it should be guaranteed that all operations can be supervised, and human interaction is 

always possible when needed. Furthermore, adaptations need to be robust and reliable to prevent overhead and 

network instability caused by frequent reconfigurations. 

A promising approach to support flexible campus network reconfigurations is based on a virtual, simulated 

representation of the factory floor, also known as Digital Twin. In a first phase, this requires the reconstruction of 

the industrial environment, composed by different objects, such as walls or machines. Video and lidar based 

scanning of the environment in combination with ML methods, such as deep-learning based object recognition, 3D 

object reconstruction, and SLAM algorithms are very promising for this task [8]. In a second phase, the 

reconstructed environments are utilized as input for model-driven radio propagation simulators, e.g., ray tracing, 

to estimate corresponding 3D radio maps that describe the achievable spatial network performance. Furthermore, 

reliability maps can be generated by fusing 3D radio maps with the prediction of other relevant metrics, e.g., traffic 

load, that can be leveraged to ensure that network configurations will support the stringent reliability and latency 

requirements of mission-critical traffic.  

In case of reconfigurations of the production environment, which are often characterized by spatio-temporal 

changes in the communication traffic, radio propagation properties, and intralogistics flows, previously trained ML 

models become outdated and, in the worst case, must be retrained using data gathered from the new radio 

TABLE I 

SUMMARY OF THE INDUSTRIAL USE CASES 

Use 

Case 

Industrial Challenge Communication Solution Machine Learning Support 

A Scalability of industrial 

control systems and 

flexibility of the factory 

floor 

5G wireless connectivity and 

edge computing 

Prediction methods to allow proactive adaptation of 

industrial applications based on predicted network 

and IT conditions, and classification methods to 

improve dynamic offloading to the edge cloud 

based on classified system states and traffic patterns 

B Flexibility of production 

facilities and adaptability 

to changes with minimum 

downtimes 

Automated network planning 

and reconfiguration based on 

radio and reliability maps 

Object recognition and SLAM algorithms to enable 

3D reconstruction of the industrial environment for 

network planning, and transfer learning for network 

reconfiguration 

C Dynamicity of 

heterogeneous services, 

while providing reliability 

and isolation 

Automated creation and 

management of virtually 

isolated network slices 

RL algorithms for learning optimal slice parameters 

configuration and resource allocation, and 

unsupervised learning for anomaly detection 

D Mobility and management 

of robots and vehicles, 

while guaranteeing safety 

and security 

Proactive network 

management system based on 

accurate radio environment 

tracking and device 

localization 

Pattern recognition algorithms and correlation 

analysis to learn the mobility patterns and support 

QoS prediction and resource management, and 

distributed or federated learning to balance 

computing and network resources  
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environment. To reduce the cost of retraining, both network and production data can be used to learn the impact of 

specific network configuration parameters on the performance and can be transferred among different production 

setups to predict how some changes on such parameters will affect the performance when no or little data from the 

new setup is available. In this respect, transfer learning, which allows the use of previously trained models, can be 

employed to leverage known and optimized configurations (and/or model-based configurations) to speed up the 

optimization process and reduce complexity and the amount of required training data [9]. 

C. Dynamicity of Heterogeneous Network Services 

An additional aspect that characterizes industrial facilities is the coexistence of several, heterogeneous services 

that need to be managed by the same network infrastructure. In fact, within a campus there might be (i) production 

machines which generate logs along with alarms and errors, (ii) moving vehicles which need to be instructed on 

where to go and what to do, (iii) video cameras that need to record and send videos in real time to the edge cloud, 

(iv) trucks coming from the outside for loading or unloading goods, and (v) workers with their own devices. 

Furthermore, the industrial environment is highly dynamic making all these classes of services varying in time and 

space. Additional challenges include sudden changes in the traffic load, for instance due to arrival of many devices 

or a shift change in the factory. When managing such heterogenous traffic, specific requirements need to be 

fulfilled. First, it is expected that traffic that directly affects the reliability of the production process is treated with 

the highest priority to meet the reliability and latency requirements. At the same time, isolation among different 

traffic types should be guaranteed, especially if different parties are present on the campus. Likewise, mobility 

should be properly handled, not only within the campus, but also when moving from the private to the public 

network. Finally, unexpected events and anomalies should be properly and timely identified, while minimizing the 

need for human intervention. 

Addressing the needs for automated and efficient traffic management is possible by creating virtual logical 

network instances, i.e., network slices, one for each class of traffic/device that needs to be served on the campus. 

In this way, each class is assigned to corresponding service level agreements (SLAs) along with isolation and 

mobility requirements. Appropriate automated mechanisms should be able to translate production requirements 

into network parameters, such that slices are created automatically and are easy to manage. The solution should 

also be highly dynamic, for quick commission and decommission of resources when traffic varies, and efficient, 

so that all traffic can be handled on the same common physical infrastructure. The network should also proactively 

recognize changes or anomalies in the traffic as well as network behaviors, so that countermeasures are 

automatically proposed, and effects can be monitored.  

ML plays an important role in achieving full automation of slice creation and management. As a matter of fact, 

different ML methods can be used to support network slicing [10]. As an example, to enable automated slice 

creation, proper RL mechanisms could be applied to learn the effect of specific slice configuration parameters on 

the production requirements. Deep reinforcement learning is also a known candidate for efficient resource 

management [11]. In contrast, unsupervised learning is commonly used for anomaly detection tasks, which are 

critical in identifying unexpected changes in the production or network environment [12]. So far, in the mentioned 

references, only data from the network context has been used as input for the ML methods. Additional benefits can 

be achieved when enriching these approaches with data and requirements from both network and production 

worlds. 

D. Mobility of Robots and Vehicles 

Flexibility and dynamicity in factories are tightly coupled to the mobility of production stations, robots, 

components and finished goods. AGVs are crucial for flexible factory intralogistics. Primary concerns in this 

context are safety and security, i.e., reducing the possibility of accidents and avoiding outages that lead to a 

disruption of the AGV traffic. Additionally, as they are battery-operated devices, energy-efficiency is an important 

design criterion. To achieve a high level of autonomy, there is a need for an accurate knowledge of the physical 

environment, e.g., AGV’s own location, nearby people, and (possibly moving) obstacles. With the introduction of 

5G systems in industrial facilities, accurate tracking of the radio environment and corresponding QoS in a factory 

becomes also highly desirable. This is challenging, because factory floors are often characterized by many 

potentially moving radio frequency (RF) reflectors and opaque RF shields. Although low-power base stations are 
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used, radiated RF energy often remains trapped in a factory hall due to the highly reflective environment, thus 

creating strong multi-path effects and interference. Consequently, RF conditions can change considerably within a 

few centimeters [13]. 

Traditional communication approaches focus on maintaining QoS primarily with reactive methods, e.g., by 

embedding pilot signals in the transmissions and conducting measurements on the receiver side. However, thanks 

to recent advances in data-driven ML techniques, there are now tools that can help enhancing future communication 

systems with proactivity [14]. This applies particularly well in a factory environment, because AGVs and robots 

have designated pathways and parking areas, move between a predefined number of stations, and have repetitive 

mobility patterns. ML algorithms, namely correlation analysis and pattern recognition algorithms, can help to find 

such correlations and patterns in an automated way. Once the future location of a device is known and the radio 

conditions at that point in space and time can be predicted with a certain accuracy, the communication and network 

management systems can take advantage of this information. Benefits are expected in terms of enhanced latency 

and reliability of the communication link, as well as increased number of supported network devices. 

The increased number of mobile production machines and AGVs transporting goods also needs to cope with the 

presence of large obstacles, which potentially require a periodic relocation in the factory. Since such relocations 

are not random, but follow patterns well-defined by the production processes, ML algorithms can proactively use 

this knowledge to mitigate interference and link failures, on the network side, as well as optimize the paths of 

AGVs to avoid unfavorable radio conditions, on the production side. 

Finally, ML and especially deep learning algorithms can perform well only if a vast amount of data is available 

for training on a continuous basis. In this respect, mobile robots and vehicles can be a valuable data source. 

However, it would defeat the purpose if transmitting this data to the edge cloud (i.e., where it is processed) would 

compromise the radio resources of the campus network dedicated to production applications. Distributed or 

federated ML can be exploited to balance the need for computing capabilities close to the data sources and the 

required bandwidth to transmit this data to a central location. This leads to an additional degree of complexity, e.g., 

due to the mobility of devices hence changing of the network topology, and at the same time interesting new 

optimization problems [15].  

III. THE DATA CHALLENGE 

One of the driving factors behind the success of machine learning has been the ability of high-capacity learning 

methods to learn generalizable models from large amounts of data. The success of ML stands and falls on the 

availability and quality of datasets coming from the specific application domain. Future 5G systems follow a 

distributed multi-tier design concept in all layers to provide better load management, speed and separation of 

compute and networking resources. At each tier, large amounts of critical operational and user data are generated, 

which constitute the so-called data plane of 5G systems. Exploiting the full potential from this data requires 

appropriate strategies to be put in place and design choices to be made to support data collection, data storage, data 

transfer, data wrangling, ML model training and testing, and lastly implementing those models in the production 

environment. A current challenge that remains to be solved is the integration of analytics into the network, which 

is currently complicated due to the various non-standardized interfaces and inconsistent data collection techniques. 

Initial steps towards enabling such functionalities in 5G systems has been addressed by the network data analytics 

function (NWDAF) defined in 3GPP TS 29.520. By enabling standard interfaces from the service-based 

architecture (SBA) to collect data on a subscription/request basis, analytics functionalities can be delivered across 

the network to enable automation and systematic reporting, thereby addressing the challenges related to custom 

interfaces.  

Campus networks are in general deployed in environments characterized by highly correlated processes that are 

then reflected in the corresponding manufacturing related data. Augmenting campus network data with such 

production data has the potential to be greatly beneficial for the ML methods by reducing training time, increasing 

data efficiency and accuracy, and introducing new insights useful to the learning process. Typical manufacturing 

related data sources can be provided by production plans, e.g., list of ongoing tasks and their status, goods and 

production stations from enterprise resource planning (ERP) systems, production planning tools, product lifecycle 

management software and fleet management tools. Furthermore, location information of end devices, such as 
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AGVs and mobile objects, can be obtained via dedicated localization systems, e.g., based on ultra-wide band 

(UWB) technology, via lidar and/or video (SLAM) or directly from the 5G system.  

The consolidation of manufacturing data with campus network data into a joint ML pipeline poses several 

challenges regarding data acquisition and integration. Problems arising from, e.g., different time 

synchronizations/granularities or heterogeneous data types/formats must be addressed to fully leverage potential 

synergies. Furthermore, access to real world data may be difficult in some cases due to, e.g., regulatory policies or 

the need for costly intrusions into the production processes. Data acquisition in such cases has to be planned in 

advance and motivated by corresponding ML benefits. In this regard, network simulators/emulators and digital 

twin representations can serve as synthetic data sources to provide initial performance assessments and enable fast 

prototyping of ML solutions. Plausibility of synthesized data shall be ensured by calibrating the employed 

simulators/ emulators with accurate radio propagation models and traffic models, backed, when possible, with real 

world data and expert knowledge for system parametrization. 

IV. CONCLUSION 

Two emerging technologies, 5G and ML, are essential in supporting vertical industries and facilitating industrial 

automation. This paper highlights the synergies of these two technologies and details their crucial roles in solving 

todays major industrial challenges.  Those are presented in the form of four key use cases, derived by the overall 

vision discussed within the KICK project. For each use case, i.e., wireless connectivity and edge-cloud integration, 

flexibility in reconfiguring the campus network, dynamicity of heterogeneous network services, mobility of robots 

and vehicles, the paper details the industrial problem, describes the recommended network solution, and justifies 

the need for ML techniques. Finally, the paper provides valuable insights into current challenges of data acquisition 

in real systems. 
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